16 research outputs found

    Comparing spectrum estimators in speaker verification under additive noise degradation

    Get PDF
    Bu çalışma, 25-30 Mart 2012 tarihleri arasında Kyoto[Japonya]’da düzenlenen IEEE International Conference on Acoustics, Speech and Signal Processing’da bildiri olarak sunulmuştur.Different short-term spectrum estimators for speaker verification under additive noise are considered. Conventionally, mel-frequency cepstral coefficients (MFCCs) are computed from discrete Fourier transform (DFT) spectra of windowed speech frames. Recently, linear prediction (LP) and its temporally weighted variants have been substituted as the spectrum analysis method in speech and speaker recognition. In this paper, 12 different short-term spectrum estimation methods are compared for speaker verification under additive noise contamination. Experimental results conducted on NIST 2002 SRE show that the spectrum estimation method has a large effect on recognition performance and stabilized weighted LP (SWLP) and minimum variance distortionless response (MVDR) methods yield approximately 7 % and 8 % relative improvements over the standard DFT method at -10 dB SNR level of factory and babble noises, respectively in terms of equal error rate (EER).Inst Elect & Elect Engineers, Signal Processing SocIEE

    Using group delay functions from all-pole models for speaker recognition

    Get PDF
    Bu çalışma, 25-29 Ağustos 2013 tarihlerinde Lyon[Fransa]'da düzenlenen 14. Annual Conference of the International Speech Communication Association [Interspeech 2013]'da bildiri olarak sunulmuştur.Popular features for speech processing, such as mel-frequency cepstral coefficients (MFCCs), are derived from the short-term magnitude spectrum, whereas the phase spectrum remains unused. While the common argument to use only the magnitude spectrum is that the human ear is phase-deaf, phase-based features have remained less explored due to additional signal processing difficulties they introduce. A useful representation of the phase is the group delay function, but its robust computation remains difficult. This paper advocates the use of group delay functions derived from parametric all-pole models instead of their direct computation from the discrete Fourier transform. Using a subset of the vocal effort data in the NIST 2010 speaker recognition evaluation (SRE) corpus, we show that group delay features derived via parametric all-pole models improve recognition accuracy, especially under high vocal effort. Additionally, the group delay features provide comparable or improved accuracy over conventional magnitude-based MFCC features. Thus, the use of group delay functions derived from all-pole models provide an effective way to utilize information from the phase spectrum of speech signals.Academy of Finland (253120)Int Speech Commun AssociationAmazonMicrosoftGoogleTcL SYTRALEuropean Language Resources AssociationOuaeroImaginoveVOCAPIA ResearchAcapelaSpeech OceanALDEBARANOrangeVecsysIBM ResearchRaytheon BBN TechnologyVoxyge

    I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences

    Get PDF
    The I4U consortium was established to facilitate a joint entry to NIST speaker recognition evaluations (SRE). The latest edition of such joint submission was in SRE 2018, in which the I4U submission was among the best-performing systems. SRE'18 also marks the 10-year anniversary of I4U consortium into NIST SRE series of evaluation. The primary objective of the current paper is to summarize the results and lessons learned based on the twelve sub-systems and their fusion submitted to SRE'18. It is also our intention to present a shared view on the advancements, progresses, and major paradigm shifts that we have witnessed as an SRE participant in the past decade from SRE'08 to SRE'18. In this regard, we have seen, among others, a paradigm shift from supervector representation to deep speaker embedding, and a switch of research challenge from channel compensation to domain adaptation.Comment: 5 page

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.Peer reviewe
    corecore